Monthly Archives: June 2019

How Live Cell Analysis Technology is Meeting the Needs of Ever Evolving Advanced Cell Models

In this podcast and accompanying article, we interviewed Dr. Kimberly Wicklund, Head of Product Management for the IncuCyte at Sartorius about how live cell analysis is meeting the needs of advanced cell models and how the launch of the new IncuCyte SX1 is providing scientists more options when it comes to using live cell analysis in their workflows.

Show Notes

We began the podcast by discussing how cell modeling and cell systems have evolved significantly. I asked Dr. Wicklund if she could explain for listeners how cell monitoring has advanced to meet these needs. She described how researchers are looking for physiological relevance in their cell models and cell systems and are making a shift from simple, recombinant cell systems, and moving towards primary cells or stem-cell derived cells that are often human and patient-specific. Co-cultures, multi-cultures and tissue organoid models offer significant promise, but also present challenges to the typical cell workflows, which puts huge pressure on instrumentation to keep up. She went on to stress the importance of taking cell health into account first and foremost in instrumentation, but also to consider the end users as well to ensure that their work can be done efficiently and that their cells are being used efficiently as well.

Next I asked Kim if she could explain live cell analysis and how is it different from endpoint workflows like flow cytometry. She explained that live cell analysis centers on the dimension of time and it centers on repeated measurements of the same populations of cells. She then provided a great analogy, she said “If you think about your favorite sport, do you want to see the score half-way through and nothing else, or do you want to watch how it evolved? If you only see the score at a point in time, how do you know who won, and how do you feel about the next game? You would have no idea what’s to come.”

We then discussed why live cell analysis a good fit for advanced cell systems like primary cells and stem cell derived cells. Kim continued with her sports analogy by explaining, “if you’re watching a game, you want to know what team started strong and then lost their edge, what players really shined, that can change in an instant. So think of your cell models as your favorite team, full of different personalities that can be considered unpredictable until you watch them long enough and really dig in and put them in an environment that doesn’t change and then and only can you begin to predict.”

Next I asked Kim if she could get a bit more specific and describe the IncuCyte live-cell analysis technology and why is it a good fit for these more advanced cell models. She explained that it starts with being an advocate for the cells and the scientists. She went on to say that with the IncuCyte, cells are put in a precise and robust environment, a standard tissue culture incubator. Cells are then left in one spot and the IncuCyte’s mobile optical system travels to the cells and captures images repeatedly, over time. For the scientists, the IncuCyte is as simple and as automated as possible from placing the cells into the IncuCyte until the time when you are getting results. She said that during product development, we have our team of biologists that are sitting right alongside the engineers saying, “I need this to be fewer clicks” or “I need this to suit my workflow” or “I don’t want to figure that out, that’s more technology than biology.” And that’s the rule, if it gets too complicated, then we’re wasting cells and we’re wasting scientists’ time. And we don’t like to do that!

We then talked about an exciting announcement that Sartorius is making at ISSCR this week. Kim explained that they are expanding the IncuCyte product portfolio to include another model, the IncuCyte SX1. Kim explained that the SX1 offers the same information-rich analysis and streamlined user experience as the flagship model, the IncuCyte S3. However, she described that the S3 is a workhorse that can accommodate multiple experiments in parallel, up to six microplate experiments at a time, which is ideal for a lab that has a substantial workload with many users performing live-cell analysis on a daily or weekly basis. But not every lab has that demanding of a workload. A lab might be new to live cell, or there may be fewer users, and that is the lab that might prefer an SX1.

I told Kim that scientists will want to know how it will make their research better, more efficient and more productive. She then described some of the key workflow advantages of the IncuCyte including the ability to observe and measure cell models during the entire cell biology workflow, from culture to manipulation to assay and imaging and analyzing cell culture flasks around the clock. She listed several key workflow steps that could be accomplished using the IncuCyte including ensuring cell seeding densities are consistent, validating successful transfection, performing an assay at microplate scale to see what happens in response to a treatment or a knock-down, just to share a few examples. Kim finished by saying that the IncuCyte accommodates a range of applications for analysis of cell health, movement, morphology or function that can easily be adapted to advanced cell models.

I stated that one of the most impressive aspects of the IncuCyte technology to me is that there are over 2,500 peer-reviewed articles discussing applications of the IncuCyte and new uses of are being developed all the time. I asked her how they handle questions from users during implementation of some of these new applications and what kind of support is offered to end users. Kim shared that she thinks one of the greatest strengths of IncuCyte support is the fact that applications are developed from start to finish in their own labs. They take questions from users, sit with biologists, and then provide all the tools that they need from start to finish to answer that question. That means that they develop appropriate reagents, vesselware, and software to get a scientist from point A to point B with as little trial and error as possible, plus they look at multiple and relevant cell types and cell models to evolve applications.

I followed up by asking if they utilized the information from users about new applications in developing the new IncuCyte model. She said yes, what they saw was that every cell biologist had a need to observe their cells across the entire workflow, from the moment cells are placed in culture. With the SX1, an individual user can improve their cell culture quality control, ensure quality downstream analysis, and generate an information-rich analysis at a scale that is not practical with traditional cell analysis technologies.

I said that it must be very exciting to see all these new uses for the IncuCyte being developed and asked based on what she has seen, if she had thoughts on the future of live cell analysis. Kim said there is so much to look forward to. We are seeing our users embarking on exciting fields like cell therapy and personalized medicine, and taking advantage of game changing technologies like CRISPR. It’s not just about seeing how a cell responds, it’s about manipulating and leveraging all that a cell has to offer. When you start realizing we have everything we need to combat disease, repair an organ, or determine what treatment we need in our own bodies it just fills you with such hope and excitement for the future!

I closed the interview by asking if there was anything else she wanted to add for our listeners? She said that expanding the IncuCyte portfolio is a big step towards fulfilling our vision that every cell biologist can gain live-cell insights with an IncuCyte.

For more information about the IncuCyte portfolio of products, please see

Innovative vaccine manufacturing enables the delivery of vaccines to the developing world

In this podcast, we interviewed Dr. Alex Chatel, Product Manager, Viral Applications, Univercells about the biggest challenges facing vaccine manufacturing today, why it is so difficult to manufacture and deliver vaccines to the developing world and how a novel technology with the support of the Gates Foundation is poised to address these challenges.

I began the interview by asking Dr. Chatel what he sees as the biggest challenges facing vaccine manufacturing today. He stated that the main challenge is manufacturing capacity and as a result, vaccine supply is too low compared to what is needed. Another big problem is that vaccines are being manufactured today using technologies that are outdated. These inefficient vaccine manufacturing methods cause both captial expenditure and operating expenses to be higher than necessary. Unfortunately the cost of production of vaccines will remain too high unless a change in manufacturing is implemented.

Next, I asked him why it is difficult to manufacture and distribute vaccines to the developing world? He explained that the capacity and outdated technology problems are issues in both the developed and developing world. However, the developing world has the additional challenge of distribution, specifically cold chain. Maintaining product stability is obviously important to maintaining efficacy, but cold chain distribution is often hard to maintain from manufacture to delivery in some of these areas. Some companies are working on developing more stable formulations for travel and other solutions. Administration of the vaccine and managing the proper handling and disposal of syringes is also difficult and presents the risk of spreading infectious disease.

We then discussed how Univercells’ Scale-X technology helps enable vaccines delivery worldwide? He explained that most viral vaccines are manufactured using adherent cells and thus they need a point of anchorage for production. Currently support matrices used in vaccine manufacturing include microcarriers in bioreactors or static systems such as roller bottles or stacked plate equipment. Scale-X couples the advantage of having the environmental culture control found in bioreactors with the gentle growth environment of static systems. In this system, the cells adhere to the support matrix, while nutrients in the culture media are circulated around the cells gently. On of the key advantages of this approach is that a high level of production can be achieved in a small footprint of equipment. This enables better facility design and utilization, plus capital expenditures are much less than traditional manufacturing technologies where more facility space and environmental controls are necessary.

Another advantage that Alex shared is that the equipment is small and fully automated with only a small number of operations required to run the system. This provides a much less risky and less costly alternative to traditional manufacturing where more manual operations increase risk of error and require more labor to operate. In addition, the Scale-X technology is highly scalable and permits easy and quick scale up to larger volumes. Cells receive a consistent experience at both small and large scales, so scale up is quite simple.

Alex then explained how Univercells has demonstrate success of the platform through hundreds of experiments using vero cells to produce polio vaccine. Through a grant given by the Bill and Melinda Gates foundation, they have looked at improving the manufacturing of the polio vaccine from R&D to pilot scale and are now ready to scale up to large scale production. They plan to manufacture their first lot of clinical material and have also been gathering experience with other cell types and viruses for vaccine manufacturing and the manufacturing of viral vectors for cell and gene therapy applications.

I then asked if Alex could tell me a little more about their work with the Gates Foundation. He said that one of the goals of the Gates Foundation is a focus on eradication of polio from the planet and they fund programs to achieve this goal. One area of their funding is aimed at disruptive manufacturing technologies, which Scale-X represents. The goal here being to bring new technologies to vaccine manufacturing that will drive down the cost of vaccine manufacturing and furthermore make it more commercially interesting for companies to develop and produce new vaccines. Also, there is a need to fill the current supply gap for existing vaccines of interest in order to reach worldwide vaccination targets. Univercells received their grant in 2016 and will have the first lot of clinical material with the ultimate goal of manufacturing polio vaccine at large scale.

I went on to ask Alex how he envisions Scale-X being employed in the developing world. He said one of the key features of the technology is its ability to integrate with another product to create a micro facility. In this micro facility both cell culture production of viral material and also purification could occur within a small environment. This would cause a drastic reduction in required manufacturing footprint and the entire system could be quickly installed in countries where there might not be the existing manufacturing structure that exists in the developed world. The main barrier to entry for developing world that wants to manufacture its own vaccines is the cost of building a manufacturing facility. With the micro facility, these countries could consider manufacturing their own vaccines rather than purchasing from pharmaceutical companies.

Last, I asked Alex if he had anything to add for listeners. He said that one of the cool things about this technology is that it represents a step change in how vaccines are manufactured now and in the future. Once implemented it would be completely different to what we are used to and presents the opportunity to bring more modern technologies to vaccine manufacturing -an industrial revolution of vaccine manufacturing. Ultimately though the main benefit is that disease eradication targets through vaccination can be more easily met.